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Abstract 
Nonlinear soil responses manifested through site and soil-structure interaction effects must be taken into 
account to accurately predict the response of civil structures under earthquake excitations. The nonlinear 
properties of soil layers must, therefore, be accurately and reliably estimated. Identifying these parameters 
from earthquake data recorded by geotechnical arrays is a promising solution because such data represent 
a full-scale experiment replete with every detail. In this project, we devise a stochastic filtering framework 
to estimate nonlinear soil properties from such data. To do so, a one-dimensional Finite Element Model of 
a site is modeled, and the parameters of the soil’s constitutive model together with the input excitation 
(incident, bedrock, or “within” motions) are identified using Unscented Kalman Filter techniques. The 
devised method is verified using several synthetic examples and validated using centrifuge test data and 
event data recorded at the well-known Lotung site. The method is also applied to earthquake data recorded 
by several CSMIP Geotechnical Arrays—only one of which is presented here for brevity.  

1 Introduction 

Although near-surface probable nonlinear soil layers have a negligible dimension compared to the path 
seismic waves passed from the source to the site, they significantly contribute to the observed ground 
motion on the ground surface [1]. So, realistic physics-based predictions could not be achieved unless the 
effects of the near-surface nonlinear soil are taken into account. While there are quite a number of veritable 
analytical and numerical methods to predict site response given bedrock or outcrop motions (for example, 
[2]–[4]), their accuracies inherently depend on the knowledge of the soil layers dynamic properties. 
However, laboratory testing of “undisturbed” soil samples inevitably involves some violation of in-situ 
conditions. For example, loading paths in the lab tests are significantly different from those that the soil 
experiences in the field. To resolve this problem, field measurements had been suggested. Cross-Hole Tests 
(CHT), Down-Hole Tests (DHT), Suspension Logging, Seismic Reflection, Seismic Refraction, and 
Spectral Analysis of Surface Waves (SASW) are among various methods that are used for measuring shear 
wave velocities of soil layers, which is a key parameter for predicting the linear dynamic responses of a soil 
deposit. However, even these in-situ tests cannot mimic the actual behavior of the site under real-life 
earthquakes. This is because the sources of real-life seismic waves are different from those used in in-situ 
tests. Moreover, in-situ tests are typically only able to capture the very-small-strain (and thus linear) 
responses of the soil layers. On the other hand, it is well accepted that soil mostly behaves nonlinearly 
during even moderate earthquakes and reaches strains well beyond those that can be induced in 
conventional in-situ tests [5]. 

Not surprisingly, the estimation of dynamic site properties from recorded ground motions has been an 
important topic of research (for example, [6], [7]), because earthquakes may be regarded as prototype in-
situ dynamic tests carried out by nature and the data recorded during earthquakes offer precious 
opportunities for the study of in-situ behavior of soil within a strain range that has engineering significance.  
However, most of the identification studies carried out in the past are limited to linear or equivalent linear 
soil properties of soil layers [8], [9]. These limited studies, in which soil nonlinearity was considered, have 
limited applicability because the assumed constitutive nonlinear model was very simple [10]. Moreover, in 
many such studies, in-depth motions were used as input excitations through the conventional outcrop 
method (with absorbing boundary condition), which reduces the applicability range of the method. More 
importantly, it is well accepted that within motions are polluted by downgoing waves and should not be 
used as outcrop input excitations [11].  

In this project, we propose an inverse solution that significantly mentioned the above limitations. As 
schematically shown in Figure 1, considering one-dimensional (1D) site response and having general 
information like layering and soil types, we develop, test, and validate input-output and output-only 
identification algorithms to identify nonlinear soil properties, as well as incident motions, from data 



recorded in a geotechnical array. The current version of the proposed solution needs a reasonable initial 
guess for soil parameters. Also, a specific nonlinear constitutive model is used while the extension of the 
method to study the plausibility of various models is straightforward.    

 

 
Figure 1. The level of information needed or estimated in this project.  

2 The Proposed Framework 

There are two approaches to carry out dynamic site response analyses, as shown in Figure 2. In the more 
traditional approach, the site is modeled up to the bedrock depth (half-space), and the radiation damping is 
modeled by using an absorbing boundary to prevent wave reflections. Through this approach, the incident 
motion must be used as input excitation, which is theoretically can be obtained from nearby rock outcrop 
motion (with a ½ factor). However, as seen, this approach is only valid if there is no impedance contrast 
below the boundary level and there is a very close rock outcrop motion. In another approach, the domain 
can be cut at any depth as long as the so-called within motion (measured in-depth motion) is used as input 
excitation, and a fixed boundary is used.  

 
Figure 2. One-dimensional site analysis approaches. 
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We propose to solve the inverse problem using output-only sequential Bayesian estimation [12]–[14], as 
shown in Figure 3. In this approach, the 1D FE model of the site is modeled up to the bedrock depth with 
an absorbing boundary condition if the bedrock is not rigid. Then, a soil constitutive model is chosen, and 
its parameters are identified along with the unknown incident motion through a Bayesian model updating 
approach, details of which are presented in the next section.  

    

 
Figure 3. The one-step solution. 

The aforementioned joint input-parameter estimation solution is prone to a large uncertainty level if the 
number of parameters is large or the number of in-depth recorded data is limited. To resolve this issue, we 
classify all possible problems into five classes as schematically shown in Figure 4 depending on the real 
bedrock condition, the complexity of the domain, and the location of the sensors. The simplest problem is 
one with a few layers and multiple sensors, a rigid bedrock, and a sensor at the bedrock (Figure 4a). In 
these types of problems, we will use the Input-Output (IO) version of the identification algorithm to estimate 
the soil’s material model parameters. If the domain gets complicated, but there is still a sensor at the 
bedrock, and the bedrock is rigid, the IO identification is the best strategy (Figure 4b). 

On the other hand, if the domain is simple, but there is no sensor at the bedrock depth (Figure 4c), while 
the Output-Only (OO) version of the algorithm can work, a two-step method will be another option. In the 
two-step method, the domain is assumed fixed at the deepest instrumented point, and the IO identification 
method is used to estimate the parameters of the domain. Then, in the second step, the identification method 
in the OO setting is employed to estimate the remaining parameters (if any) as well as incident motion. The 
same strategy can be used for a simple domain on top of the non-rigid half-space if there is a sensor at the 
bedrock depth (Figure 4d). However, if the domain is complex, the output-only solution cannot work 
because there would be a large list of uncertain parameters and input excitations. In these problems (Figure 
4e), only the 2-step solution could work. Finally, similar to the previous case, if there is no sensor at the 
bedrock depth, but the bedrock is rigid, then the two-step solution is recommended (Figure 4f).  

 

 

 



 
Figure 4. Various possible estimation problems. IO and OO represent the “Input-Output” and “Output-Only” 
identification methods, respectively.  

2.1 The Bayesian Model Updating 
Herein, Bayesian model updating is briefly reviewed. The formulation is presented for the general case of 
parameter-input estimation, and it is used here for parameter estimation in the IO mode.  

Let’s assume a site with a soil deposit, as shown in Figure 5 (left). There are 𝑚 soil layers located above an 
elastic half-space with finite rigidity (bedrock) and excited by vertically propagating earthquake excitations. 
Using a geotechnical array, absolute accelerations at several points (not necessarily at all layers or even 
boundaries of layers) are recorded. This continuous system can be modeled using a Finite Element (FE) 
model as shown in Figure 5 (right) [15], for example. Note that This model is a 1D-2C (two components) 
model with plane strain assumption, but the estimation method can be used for 1D-3C (three components) 
without any changes. To account for the finite rigidity of the bedrock, a Lysmer-Kuhlemeyer [16] dashpot 
is incorporated at the base of the soil column, whose coefficient equals the product of the mass density and 
shear wave velocity of the bedrock with the area of the base of the soil column (size of the element). The 
soil column is excited at the base by a horizontal force time-history, which is equal to the ground (outcrop 
motion) velocity multiplied by the dashpot’s coefficient [17].  

The response of the FE model at each time step to the applied force time-history can be expressed as a 
nonlinear function of the model parameter vector, 𝜽, and the time-history of the force, 𝒇$:&,  

𝒚(& = ℎ&(𝜽, 𝒇$:&), (1) 

where 𝜽 = [𝜃$, … , 𝜃12] contains 𝑛5 parameters (e.g., the layers’ shear wave velocities, parameters of the 
constitutive models, etc.) that define the FE model, and  ℎ&(. ) is the nonlinear response function of the FE 
model at time step 𝑖, encapsulating all the dynamics of the model from time step 1 to 𝑖. The measured 
response vector of the site, 𝒚&, is related to the FE predicted response, 𝒚(&, as 

𝒗&(𝜽, 𝒇$:&) = 𝒚& − 𝒚(&(𝜽, 𝒇$:&), (2) 

where 𝒗& ∈ R1𝒚×$  is the simulation error vector that accounts for the misfit between the measured 
responses of the site at 𝑛𝒚 locations and the FE-predicted response. The simulation error is ideally modeled 
as a zero-mean Gaussian white noise vector (i.e., 𝒗&~𝑁(𝟎,𝐑)) by neglecting the effects of modeling error. 
The objective of the estimation problem is to find the estimates of the unknown parameter vector, i.e., 𝝍& =
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B𝜽C, 𝒇$:&
CD
C
, for which the discrepancies between the measured and FE predicted responses are minimized 

in a probabilistic sense. Since the estimation problem is highly nonlinear, a sequential estimation approach 
is used to improve estimation efficiency. The time domain is divided into successive overlapping time 
windows in our approach, referred to as the estimation windows. The problem is then solved at each window 
to estimate the unknown parameter vector.  

Assume that the 𝑚-th estimation window spans from time step 𝑡$F to time step 𝑡GF. Therefore, the unknown 

parameter vector at this estimation window is defined as 𝝍F = H𝜽C, 𝒇IJK:ILK
F CM

C
, where 𝝍F ∈ R(1𝜽NIO)×$ , 

in which 𝑡P = 𝑡GF − 𝑡$F  is the window length. The unknown parameter vector, 𝝍F,  can be estimated using 
a parameter-only Kalman filtering method (e.g., [18]). To this end, the unknown parameter vector is 
modeled as a random vector, the evolution of which is characterized by a Gaussian Markov process—also 
known as a random walk. Then, a state-space model is set up, in which the state equation governs the 
evolution of the random parameter vector and the measurement equation corresponds to the discrepancies 
between the measured and FE predicted responses [19], i.e., 

𝝍F,QN$ = 𝝍F,Q + 𝜸F,Q, (3) 

𝒚IJK:ILK = 𝒚(IJK:ILK,QN$T𝝍F,QN$U + 𝒗IJK:ILK,QN$,	 (4) 

where 𝜸F,Q~𝑁(𝟎,𝐐), 𝒗IJK:ILK,QN$~𝑁(𝟎,𝐑X), where 𝐑X ∈ RTIO×1𝒚U×TIO×1𝒚U is a block diagonal matrix, whose 
block diagonals are the simulation error covariance matrix 𝐑. In Eqs. (3) and (4), 𝑘 denotes the iteration 
number. As can be observed, the estimation process at each estimation window is iterative, i.e., the mean 
vector and covariance matrix of the unknown parameter vector is iteratively updated based on the 
discrepancies between the time histories of the measured and estimated responses.  

 

 
Figure 5. Instrumented soil deposit (left) and its equivalent discrete FE model (right) [15]. 

An Unscented Kalman Filtering (UKF) [20] method can then be used to update the unknown parameter 
vector at each iteration. In our method, the nonlinear FE model is evaluated separately at a set of 
deterministically selected realizations of the unknown parameter vector, which are referred to as the sigma 
points (SPs) denoted by 𝝑[ . The sigma points are selected around the prior mean estimate 𝝍\]. In this study, 
a scaled Unscented Transformation (UT) based on 2𝑛𝝍 + 1 sigma points (i.e., 𝑗 = 1,2, … ,2𝑛𝝍 + 1) is used, 



where 𝑛𝝍 denotes the size of the extended parameter vector. The mean and covariance matrix of the FE 
predicted structural responses, and the cross-covariance matrix of 𝝍 and 𝒚 are respectively computed using 
a weighted sampling method as  

𝒚a = ∑ 𝑊F
[G1𝝍N$

[d$ 𝒚(&T𝝑[U,  (5) 

𝐏\𝒚𝒚 = ∑ 𝑊f
[G1gN$

[d$ B𝒚(&T𝝑[U − 𝒚aDB𝒚(&T𝝑[U − 𝒚aD
C
+ 𝐑,  (6) 

𝐏\𝝍𝒚 = h 𝑊𝑒
𝑗

2𝑛𝜓+1

𝑗=1
B𝝑[ − 𝝍\]D[𝒚(&(𝝑[) − 𝒚a]C,	 (7) 

where 𝑊F
[  and 𝑊f

[ denote weighting coefficients [20]. Now, the UKF prediction-correction procedure can 
be employed to estimate the posterior parameter mean vector 𝝍\NF,QN$ and covariance matrix 𝐏\𝝍,F,QN$N  at 
each iteration. The proposed identification algorithm is summarized in Table 1. 

Table 1. Identification algorithm for joint estimation of the model parameters and the FIM time history. 

1. Set the estimation window length 𝑡P, and the start and end points of each estimation window. 
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as 

𝝍\Nk = H𝜽\k
C, 𝒇IJl:ILl

k CM
C
, and 𝐏𝝍,kN = m

𝐏\𝜽𝜽,k 𝟎
𝟎 𝐏\𝒇l

n.  

3. Define the process noise covariance matrix 𝐐 and the simulation error covariance matrix	𝐑. Set up matrix 𝐑X. 
4. For the 𝑚-th estimation window: 

4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown parameter vector 
from the last estimation window (i.e., 𝝍\NF]$, and 𝐏𝝍,F]$N ). Set up 𝝍\NF,k and 𝐏𝝍,F,kN  based on  and 
𝐏𝝍,F]$N . 
4.2. Iterate (𝑘 = 1, 2, …): 

a. Set 𝝍\]F,oN$ = 𝝍\NF,o, 𝐏𝝍,F,QN$] = 𝐏𝝍,F,QN + 𝐐. 
b. Generate sigma points. Run the FE model for (2𝑛𝝍 + 1) sigma points. Derive  𝒚a, 𝐏\𝒚𝒚, and 𝐏\𝝍𝒚 using 
Eqs. (5)-(7). 
c. Compute the Kalman gain matrix: 𝐊 = 𝐏\𝝍𝒚T𝐏\𝒚𝒚U

]$
. 

d. Find the corrected estimates of the mean vector and covariance matrix of the unknown parameter vector: 
 𝝍\NF,oN$ = 𝝍\]F,oN$ + 𝐊	T𝒚IJK:ILK − 𝒚aU, 𝐏𝝍,F,QN$

N = 𝐏𝝍,F,QN$] − 𝐊T𝐏\𝒚𝒚 + 𝐑XU𝐊C. 

e. Check for convergence:   if q𝝍\NF,QN$ − 𝝍\
N
F,Qq < 0.02 × 𝝍\NF,Q]$ or 𝑘 + 1 > 10, then move to the next 

estimation window (𝑚	 = 	𝑚	 + 	1, go to step 4); otherwise, iterate again at the current estimation window 
(𝑘	 = 	𝑘	 + 	1, go to step 4.2).  

2.2 The Selected Constitutive Model 
During the last few decades, a broad range of nonlinear soil models—uniaxial to multi-axial, 
phenomenological to physics-based—have been devised (e.g., [21], [22], [23], [24], [25]). For example, 
one of the most well-known and advanced nonlinear soil models is the one devised by Elgamal and co-
workers [25]. In that model, soil plasticity is formulated based on the multi-surface concept, with a non-
associative flow rule to reproduce the well-known dilatancy effect. The yield surfaces are of the Drucker-
Prager [26] type. This model is frequently used in the direct simulation of SSI problems within the research 
community and is already available in OpenSees [27]. The multiple hierarchical yield surfaces of this model 
enable it to approximate the soil behavior within a broad range of strain regimes, but this is also its 
disadvantage in that a large number of requisite model parameters renders the calibration process 

+
-1ˆ mψ
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formidable. By the same token, the model may exhibit spurious sensitivities. As we are going to solve a 
massive inverse problem using real-life data, these two major drawbacks are problematic. 

A model with a simpler scaffold is that proposed by Borja and Amies [22]. This is also a multi-surface 
model but only has a bounding surface and a vanishing elastic region. Incidentally, the Borja-Amies (BA) 
model only needs a few parameters for calibration. The validity of this model was examined by utilizing 
the downhole array motions recorded at Lotung, Taiwan, through one-dimensional nonlinear site response 
analyses [28] with promising success. The model admits an additive decomposition of the stress into 
inviscid (frictional) and viscous parts, as in: 

𝝈 =	𝝈&1v +	𝝈v&w,						𝝈&1v = 𝑪f: (𝝐 − 𝝐z),				𝝈v&w = 𝑫: 𝝐̇ (8) 

where 𝑪f	and D are elastic stiffness and viscous damping tensors, respectively; 𝛜 is the total strain tensor; 
𝛜z is the plastic strain tensor; and 𝛜̇	is the total strain rate. Given this decomposition, the model can also 
incorporate material level strain-rate-dependent damping, enabling a modeler to match field-identified 
damping behavior, even when such behavior is complex. Omitting details here for brevity, the main 
equation to calibrate this model is,  

𝐺
𝐺F��

= 	1 −
3
2𝜏�

	� �ℎ �
𝑅 √2⁄ + 𝜏� − 𝜏

𝜏
�
F

+ 𝐻k�
]$

𝑑𝜏
G��

k
 (9) 

where 𝐺 = 𝜏�/𝛾� is the secant shear stiffness, and 𝑅 is the radius of the bounding surface, and parameters 
ℎ, 𝑚 and 𝐻k control the intensity of the hardening. The model can be directly calibrated using an 
experimentally obtained (or otherwise estimated from real-life) 𝐺/𝐺F��  curve [29] and a frequency-
dependent damping curve. In the present study, we incorporate this model with the UKF-based estimation 
method described above.  

The advantages of the BA model are clear:  

• It is a thermodynamically consistent model based on the classical viscoplasticity framework with 
well-defined parameters.  

• It is a three-dimensional model, and thus, if it is accurately calibrated, it can accurately predict soil 
behavior under multi-axial stress states, such as those due to irregular surface topography and soil 
stratigraphy, or underground scatterers. 

As a part of a parallel study, the BA model has been successfully implemented in Opensees and extensively 
verified and validated [30]. In this study, we use Opensees [27] for all needed simulations, and the soil 
model is this recently implemented BA model.  

3 Verification Using Synthetic Data 

To verify the proposed inverse solution for the identification of nonlinear soil properties, four problems are 
designed and solved, which cover all cases presented in Figure 4. Figure 6(left) shows the profile of the 
site. It consists of four layers numbered from bottom to top. This 47	𝑚 site is on top of an elastic half-space 
which is replaced by a horizontal and vertical dashpot with coefficients1 𝑐� = 𝜌𝑉w and  𝑐v = 𝜌𝑉z, 
respectively, in which 𝜌 is the mass density of the half-space and 𝑉w and 𝑉z are, respectively, shear and 
compressional wave velocity of the half-space. The parameters defining the nonlinear BA model of all four 

                                                             
1 This is a plane strain problem with both in plane and out of plane dimenstions equal to 1	𝑚.  



layers are shown in this figure too. It is assumed that there are four accelerometers shown by red triangles 
in Figure 6(left) which record the response of the site under two vertically propagating shear and 
compressional excitations shown in red and green, respectively. To be realistic, vertical and North-South 
velocity records in 35	𝑚 depth at CSMIP (California Strong Motion Instrumentation Program) [31] station 
68323 recorded during the 2014 South Napa earthquake are used as incident excitation. To make sure the 
site behaves nonlinearly under this input excitation, both components are magnified by a factor of 10, which 
results in an input excitation with a horizontal peak acceleration of 0.14𝑔. Figure 6(right) shows the scaled 
vertical and horizontal accelerations of these two input excitations. For the simulation and identification 
studies, 30 seconds of the significant portion of these signals is used, which is shown in Figure 6(left) by 
a red rectangle.   

 
Figure 6. Soil profile used for the verification studies (left) and horizontal and vertical incident motions. 

In all simulation-identification studies presented following a random noise with 5% RMS (Root Mean 
Squares) of the noise-free response signals are added to the simulated response to mimic real-life 
conditions.  

3.1 Case 1: Complex Domain with Measured Incident/Outcrop Motion 
In the first case, it is assumed that the incident motion is available, for example through outcrop 
measurement. So, the identification method is employed in the IO setting to estimate 5 parameters 
(𝐺k, 𝑆�, ℎ,𝑚, 𝑎$) for all four layers in one step. To do that, all four noisy measured horizontal acceleration 
responses are used. The identification begins with assuming a 30% initial error with respect to the true 
values shown in Figure 6(right). Figure 7 shows the variation of estimated parameters (normalized with 
the corresponding true values) at every iteration. As seen in this figure, most of the parameters quickly 
converge to the true values once the moving window receives data from the strong portion of the data. 
There are some errors in identified parameters of the second layer, which is expected because its 
contribution to the response of the site is smaller due to its thickness. Specifically, the Rayleigh damping 
parameter (𝑎$) of this layer has little effects on the measured responses. To support this statement, Figure 
8 shows a comparison between measured (simulated) acceleration responses at four instrumented levels 
with the corresponding predictions obtained using final estimated parameters. As seen, predicted responses 
are identical to the measured (simulated) responses.    



 

11 

 

 
Figure 7. Identified parameters in Case 1 (normalized by the true values). 

 

 
Figure 8. Comparison between measured and predicted acceleration responses in Case 1. 

 

Finally, Table 2 presents the final estimation error of all 20 parameters. As already observed in Figure 7, 
this table shows that all parameters are identified with high accuracy except a few parameters of the second 
layer, especially the Rayleigh damping parameter.  

 



Table 2. The initial and final error of parameters in Case 1. 

 

3.2 Case 2: Estimation of the Incident Motion For a Completely Known Site 
In the second case, it is assumed that the site is fully known, and the identification method is employed in 
its OO mode to back-calculate the incident motion. For this step, because input estimation through the 
Kalman filter is prone to low-frequency error, velocity responses at S1 to S4 locations are also used along 
with the acceleration responses. Figure 9 shows the comparison between the exact incident motion and the 
estimated motion. As seen, the estimated motion is almost identical to the exact record.  

 

 
Figure 9. Comparison between the exact and estimated incident motion in Case 2. 



 

13 

 

3.3 Case 3: Simple Domain with Unknown Incident/Outcrop Motion 
In the third case, the joint estimation of input and parameters are investigated. As mentioned before, if the 
domain is complex and therefore the number of updating parameters is large, the problem must be solved 
in two steps. This case will be presented in the next section. Herein, joint input-parameter estimation is 
carried out for a simple domain. The domain is a uniform soil layer with the same thickness (47	𝑚) as the 
total thickness of the complex domain with 𝜌 = 1850 Q�

F� , 𝐺k = 1.3 × 10 	𝑃𝑎, 𝜈 = 0.48, 𝑆� = 1.19 ×
10¤	𝑃𝑎, ℎ = 8.19 × 10¥	𝑃𝑎,𝑚 = 0.97, 𝐻k = 0, 𝑎k = 0, 𝑎$ = 0.005. The location of the sensors and the 
properties of the half-space are also the same as before. Figure 10 shows the variation of estimated 
parameters (normalized with the corresponding true values) at every iteration. As seen in this figure, 𝐺k, ℎ, 
and 𝑚 converge to the true values, while there is a small error in 𝑆� and as expected large error in 𝑎$. The 
comparison between the estimated and exact input excitation as well as measured (simulated) and predicted 
acceleration responses shown, respectively, in Figure 11 and Figure 12 confirm that the response of the 
system is not very sensitive to these parameters. Final errors in the estimated parameters are reported in 
Table 3.  

 
Figure 10. Identified parameters in Case 3 (normalized by the true values). 

 
Figure 11. Comparison between the exact and estimated incident motion in Case 3. 

Table 3. The initial and final error of parameters in Case 3. 

 



 
Figure 12. Comparison between measured and predicted acceleration responses in Case 3. 

3.4 Case 4: Complex Domain with Unknown Incident/Outcrop Motion 
The last case is the most difficult case in which the site is a complex site with unknown parameters. Also, 
the incident motion is unknown too. For this case, the identification method in its OO mode would not be 
able to simultaneously identify parameters and unknown excitation because the number of parameters is 
large (20 unknown parameters). So, the inverse problem is solved in two steps: In the first step, the domain 
is assumed fixed at the lowest instrumented level (S4) and the measured within motion is used as input 
excitation to identify parameters of the domain. In the second step, the incident excitation is estimated by 
setting parameters at their estimated values.  

Error! Reference source not found. shows the variation of estimated parameters (normalized with the 
corresponding true values) at every iteration of the first step. As seen, the results are quite similar to those 
were obtained in Case 1. As seen in Figure 14 predicted responses at sensors S1 to S3 are identical to the 
measured (simulated) responses. Comparison between the initial error and the final error of all 20 estimated 
parameters are reported in Table 4. As seen, this table is very similar to Table 2. 

Now, having identified nonlinear parameters of all layers, the second step of the identification is carried 
out in OO mode to only estimate incident motion. In this step, the measurement at S4 is also added to the 
measured responses. Also, to reduce low-frequency error, both acceleration and velocity signals are used. 
Figure 15 shows the comparison between exact end estimated incident motion. As seen, the estimated 
excitation is almost identical to the exact incident velocity motion.  

 



 

15 

 

  
Figure 13. Identified parameters in Step 1 of Case 4 (normalized by the true values). 

 

 
Figure 14. Comparison between measured and predicted acceleration responses in Step 1 of Case 4. 



 
Figure 15. Comparison between the exact and estimated incident motion in Step 2 of Case 4. 

 

Table 4. The initial and final error of parameters in Step 1 of Case 4. 
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4 Validation Using Real Data 

4.1 The Centrifuge Test Data 
The centrifuge test data is precious data for the validation studies because parameters of the domain and 
input excitations are largely under control. Herein, we use data from a very recent centrifuge test series on 
buried culvert structures. The configuration of the test and the types of input excitations used to excite the 
domain are shown in Figure 16. The details of these tests can be found in [32]. The data from the free-field 
column (far from structures) under Event #10 is used here. As this is real data, a one-dimensional FE model 
with a three-component excitation (1D-3C) is developed in Opensees. The 1D-3C FE model, the sensor 
location (red circles), and the parameters of the BA model which are obtained from [33] are shown in Figure 
16 too.  

 

 
Figure 16. Centrifuge experiment.   

 

We use this model and data to validate the single-step OO solution because the number of unknown 
parameters is limited. The base motion along with seven parameters specified in Figure 16 are considered 
as unknown parameters. We start the updating assuming a 50% initial error (with respect to the values 
reported in [33])  for the parameters and a 10% initial Coefficient Of Variation (COV). The results of the 
identification are shown in Table 5. As seen, out of these 7 parameters, Parameter 3 has a very large 
estimation COV showing that the problem is almost insensitive to this parameter, and the estimated value 
is unreliable. All other parameters are estimated with small COV, and the estimated values are reliable, and 
most of them are close to the considered exact values with various levels of differences, except Parameter 
5, which shows a very large error. To see how the predicted responses using these values differ from the 
prediction using the so-called exact values Figure 17 is presented. In this figure, acceleration responses 
recorded during the test are shown in black, and those predicted by the “exact” and identified parameters 
are shown in red in the left and right columns, respectively. As seen, the responses obtained from the 
updated model are closer to the recorded responses. As these responses are used for the model updating, it 
is not surprising to see such a better prediction. However, as shown in Figure 18, the estimated base 
acceleration is very close to the recorded motion at the base of the shake table supporting the results of the 
output-only model updating carried out here.  



 
Figure 17. Comparison between recorded and predicted acceleration responses at four top sensors using considered 
exact (left) and identified (right) parameters.  

    

Table 5. identification results. 

Parameter Initial Value Final Value Initial COV Final COV 

1 +50% -1.4% 10% 0.0% 

2 +50% +91% 10% 0.2% 

3 +50% +50% 10% 70% 

4 +50% +7% 10% 1.0% 

5 +50% +800% 10% 3.2% 

6 +50% -33% 10% 2% 

7 +50% -13% 10% 0.0% 
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Figure 18. Comparison between exact and estimated input excitations.     

4.2 The Earthquake Data From Lotung Site 
The Lotung Large-Scale Seismic Tests (LSST) site is located in the North-East of Taiwan. This site was 
established in a seismically active region in 1985 to study seismic soil-structure interaction effects on 
nuclear power plants. To do so, two scaled structures were constructed by the Electric Power Research 
Institute (EPRI) and the Taiwan Power Company [34]. In addition to the structures, the responses of the 
soil were recorded in several locations on the surface and at different depths, as shown in Figure 19(right). 
Due to such dense instrumentation, the data from this site has been the subject of many studies [28], [35]–
[39]. Specifically, Zeghal and Elgamal [7], [40] have extensively studied several earthquake data sets 
recorded at this site between 1985 to 1986 (Table 6)2.  

 

Table 6. Recorded earthquake data at the Lotung site [7], [41]. 

 
 

Out of these 18 events, the first three events and Event No. 13 are not available. Also, the resolution of the 
digitized signals is relatively poor in several cases (Events No. 5, 6, 8, 9, 10, 15, 17, and 18). We also need 

                                                             
2 Data is publicly available at http://soilquake.net/Downholearray/Lotung/ 



data with a significant level of motion to observe soil nonlinearity. Moreover, the behavior of the site must 
be close to 1D, so the source of the earthquake should be far from the site. Considering these criteria, events 
7 and 16 are the best candidates that have been used by Borja et al. [28], [39], [42] too. The channels mostly 
used in previous studies and used here are FA1-5, DHB6, DHB11, DHB17, and DHB47 (see Figure 
19(right)) which are at depths of 0, 6, 11, 17, and 47 meters, respectively. It is noteworthy to mention that 
Channel 47 is not available in Event No. 16, so Step 1 (IO) can only be carried out for the first 17 meters.  

As the BA model is being used in this study, we model the Lotung site using the information provided by 
Borja et al. [28], [39]. Figure 19(left) shows the layered FE model of the first 47 m of the Lotung site with 
a fixed bottom condition (within boundary condition) and the profiles of the shear wave velocity and elastic 
shear modulus (The mass density profile was calculated using these two profiles). The instrumented depths 
are specified by red circles (the lowest level is at the fixed boundary). The parameters of the BA model of 
all layers are the same and taken from [42] as 𝑅 = 0.0015𝐺F��, 𝐻k = 0, ℎ = 0.63𝐺F��,𝑚 = 0.97 and the 
Poission ratio is 0.48. The fundamental natural frequency of the elastic model fixed at depth 47 m obtained 
from the numerical model is 1.33 Hz. Note that this frequency could be different from the natural frequency 
of the Lotung site. The natural frequency of the model is obtained by applying a fictitious fixed boundary 
condition (imposing an infinite impedance contrast), but the dominant frequency observed in the recorded 
data could be different depending to the depth at which there is actually such significant impedance contrast 
[43].   

 

 
Figure 19. The FE model of the first 47 m of the Lotung site with a fixed bottom condition (left), shear wave velocity 
and elastic shear modulus profile (middle) [42], and Plan and elevation views of the site (right).   

 

To set the damping parameters, Borja et al. [42] identified a dominant excitation frequency of 0.65 Hz from 
the recorded signal at a depth of 47 m in the LSST7 event. They assumed a 1% stiffness proportional 
damping resulting in a factor of 0.005. So, the same level of damping was assumed in this study whenever 
simulations are carried out. To make the results comparable, the same modeling and analysis assumptions 
are used. An element size of 1 m is used through which frequencies up to 25 Hz can be resolved. So, all 
recorded signals are decimated to 50 Hz. Analyses are also carried out at the same rate, but subsampling is 
used whenever there is a convergence issue. Similar to [42], the Hilber-Hughes-Taylor (HHT) integration 
method with 𝛼 = −0.1, 𝛽 = 0.3025, and 𝛾 = 0.6 is employed for all analyses. The effect of pore water 
pressure is neglected, and all analyses are carried out in a total stress state.  
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For the Lotung site, the lowest instrumented level is at 47 m, and there is limited information about the 
layering below this level. So, we use the identification algorithm in IO mode to only estimate the parameters 
of the soil layers. Out of two suitable events (LSST7 and LSST16), the sensor at depth 47 m did not work 
in the event LSST16, so we can only use LSST7. We consider 9 updating parameters. As shown in Figure 
19, 5 parameters (𝑃$ to 𝑃¤) define maximum shear modulus (𝐺k) of 5 layers. Four remaining parameters 
are 𝑃6 to 𝑃9 which define other nonlinear properties of soil layers using their corresponding 𝐺k as 
follows  𝑅 = 𝑃©𝐺0, ℎ = 𝑃¥𝐺0, 𝑚 = 𝑃 , and 𝑎$ = 𝑃ª. Also, for all layers it is assumed that 𝜈 = 0.48, 𝐻k =
0, and 𝑎k = 0.0.  

As there is no ground truth for the updating parameters, we validate the results of the identification by 
excluding the measurement level (depth 11 m) from model updating data. Figure 20 shows a comparison 
between recorded acceleration responses at four depths and in three directions with those obtained using 
the model with updated parameters. Considering this is a real-life case and there could be various sources 
of modeling and measurement noises, the level of match is very good. Also, the observed compatibility in 
response prediction at depth 11 m shows that the identification results are reliable.  

 

 
Figure 20. Comparison between recorded and predicted/updated acceleration responses in four depths and three 
directions. The recorded responses at depth 11 m are not used for the model updating.  

5 Application to Real Earthquake Data 

As a real-life application, the data from the CSMIP station 68323 is used. Figure 21(left) shows the 
instrumentation layout and the P- and S-wave velocity profiles. The idealized version of the Vs profile was 
taken from [44] as shown in Figure 21(right). This idealized profile was later more idealized into 6 layers 
as colored in Figure 21(right). By the time of this study, 8 earthquake events have been recorded by this 
station, which are all very weak motions. The largest event is the 2014 South Napa event in which Peak 
Ground Acceleration (at the surface) was about 0.03g.  



The Vs profile below 35 m is not known, so we only carry out the first step (input-output) identification as 
was done for the Lotung site in the previous section. Five parameters for each layer (𝐺k, 𝑆�, ℎ,𝑚, 𝑎$) are 
considered as unknown parameters, which result in 30 updating parameters. Figure 22(left) shows the 
comparison between the predicted responses using the updated model and the recorded signals. The 
comparison between the updated, initial [44] and modified (the idealized version of the initial profile) Vs 
profiles are shown in Error! Reference source not found.(right). These results show that the measured Vs 
profile is relatively accurate although it is a little bit lower than what we obtained using earthquake data.   

 

 
Figure 21. Benicia-Martinez Geotechnical Array. Instrumentation layout from CESMD (left), shear wave velocity, 
and small-strain damping profile [44].     

 

 
Figure 22. Left: comparison between recorded and predicted/updated acceleration responses in the South Napa 2014 
earthquake. Right: Comparison between initial [44], modified/idealized, and updated Vs profile shown in blue, green, 
and red, respectively. 



 

23 

 

In addition to this station, we carried out the same identification for several other cases too which are not 
reported here for the sake of the space.  

6 Conclusions 

We proposed the application of stochastic filtering to estimated nonlinear soil properties from earthquake 
data recorded by the geotechnical arrays. Dynamic soil properties are key ingredients of analysis for 
predicting/assessing soil-structure interaction (SSI) and site response effects under seismic excitations. 
Although there are various techniques and tools to carry out forward site response analysis with various 
levels of complexity, there could be significant uncertainty due to the available uncertainties in nonlinear 
soil models and their parameters. By using the proposed framework, various inverse 1D problems can be 
solved to obtain a reliable estimation of the soil properties even in the absence of the incident excitation. 
The method was verified using synthetic examples representing various scenarios and validated using 
centrifuge data and data recorded in the well-known Lotung site. The method was also applied to several 
CSMIP Geotechnical Arrays one of them was presented in this report. 

Project Data 
The centrifuge test data is publicly available at DesignSafe.ci with the following address 
https://doi.org/10.17603/DS2Z38Z. Earthquake data of the Lotung site is publicly available at 
http://soilquake.net/Downholearray/Lotung/. The CSMIP data is taken from the Center for Engineering 
Strong Motion Data (CESMD), which a public database that can be accessed at 
https://www.strongmotioncenter.org/.  
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